Pointers — Strings

Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horvath, A.B. Nagy, Z. Zséka, P. Fiala, A. Vitéz

15 October, 2025

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 1/31

Content

The enumerated type m Definition of pointers
= Motivation m Passing parameters as
m Syntax address
m Examples m Pointer-arithmetics
Pointers m Pointers and arrays

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 2/31

The enumerated type Motivation Syntax Examples

Chapter 1

Pointers

Fundamental Theorem of Software Engineering (FTSE)

“We can solve any problem
by introducing an extra level of indirection.”
Andrew Koenig

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 3/31

http://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering

The enumerated type Motivation Syntax Examples

Where are the variables? I'IT

Let's write a program that lists the address and value of variables

int a = 2;

double b = 8.0;

printf ("address of a: %p, its value: %d\n", &a, a);
printf ("address of b: %p, its value: %f\n", &b, b);

2 W N R

address of a: O0x7fffa3a4225c, its value: 2

address of b: O0x7fffa3a42250, its value: 8.000000

m address of variable: starting address of "memory block”
containing the variable, expressed in bytes

m with the address-of operator we can create address of any
variables! like this &<reference>

Ymore precisely left-values

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 4 /31

The enumerated type Motivation

The pointer type

The pointer type is for storing memory addresses

Declaration of pointer

<pointed type> * <identifier>;

1 intx* p; /% p stores the address of one int data */
> doublex q; /* q stores the address of one double data */
3 charx r; / * r stores the address of one char data */

it is the same, even if arranged in a different way

1 int *p; /% p stores the address of one int data */
> double *q; /* q stores the address of one double data */
3 char *r; /% r stores the address of one char data */

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 5/31

The enumerated type Motivation

Operator of indirection

m If pointer p stores the address of variable a, then
p "points to a"

m If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;

2 int *p; /* int pointer x*/ 0x1000
3

. a - 2 0x1004
5 b = 3;

6 p = &a; /* p points to a *x/ 021004

. Ap = 4] /% a = 4 %/

8 p = &b; /* p points to b */

9o ¥p = 65; /x b = 5 %/

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 6 /31

The enumerated type Motivation

Address-of and indirection — summary I-|T

operator operation description
& address-of assigns its address to the variable
* indirection assigns variable to the address

m Interpreting declaration: type of *p is int

1 int *p; /* get used to this version */

m Multiple declaration: type of a, *p and *q is int

1 int a, *p, *q; /* at least because of this x*/

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 7/31

The enumerated type Mot on Syntax Examples

Application — Function for exchanging two variath

1 void xchg(int x, int y) {
2 int tmp = x;

3 X = y;

4 y = tmp;

5)

6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;

9 *¥px = *py;

10 *py = tmp;

11}

12

13 int main(void) {

14 int a = 2, b = 3;
15 xchg(a, b);
/* NO exchange */
16 xchgp (&a, &b);/* exchange */
17 return O;
18}

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 8 /31

The enumerated type Motivation Syntax Examples

Application — returning value as parameter |'|T

m If a function has to calculate several values, then. ..
...we can use structures, but sometimes this seems rather

unnecessary.
Instead. . .
y
1 int inverse(double x, double *py)
> o \
3 if (abs(x) < 1e-10) return O0;
4 *xpy = 1.0 / x;
5 return 1; —
6 ¥ M & X
™~

1 double y; /* memory allocation for result */
> if (inverse (5.0, &y) == 1)
3 printf ("Reciprocal of %f is %f\n", 5.0, y);
4 else
5 printf ("Reciprocal does not exist"); link

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 9 /31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/inverse.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/inverse.c

The enumerated type Syntax

Application — return values as parameters |'|T

m Now we understand what this means

1 int n, p;
2 /* return value as parameter x/
3 scanf ("%d%d", &n, &p); /* we pass the addresses */

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 10 / 31

The enumerated type Examples

Remarks: I-|T

m What is the use of having different pointer types for different
types?

Type = set of values + operations

Obviously set of values is the same for all pointers (unsigned
integer addresses)

Operations are different!

The operator of indirection (x)

m makes int from int pointer
m makes char from char pointer

m Other differences are detailed in pointer-arithmetics. . .

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 11 /31

The enumerated type Motivation Syntax Examples

Pointer-arithmetics |-|T

If p and q are pointers of the same type, then

expr. type meaning
p+l pointer points to the next element
p-1 pointer points to the previous element

g-p integer number number of elements between two addresses

1 int a, *p, *q; 77 0x1000
2 a: 77| 0x1004
3 p = &a; |p;ox1ooo 77| 0x1008
4 p = p-1;

5 gq = pt2; .

6 printf("%d", q-p); 4:0x1008

2
m At pointer-arithmetic operaitons addresses are "measured” in

____the representation size of the pointed type, and not in bytes.?

2In this example we assume that size of int is 4 bytes
(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 12 /31

The enumerated type

Pointer-arithmetic

m In the above example pointer-arithmetic is strange, as we don't
know what is before or after variable a in the memory.

m This operation is meaningful, when we have variables of the
same type, stored in the memory one afte the other.

m This is the case for arrays.

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 13 /31

The enumerated type

Pointers and arrays

Motivation Syntax

Examples

T

m Traversing an array can be done with pointer-arithmetics.

int t[5] =
int *p, 1i;

{1,4,2,7,3%};

p = &t[0];
for (i = 0; i < 5; ++1i)
printf ("%d ", *(p+i));

14273

o 0~ W N R

t[0]: 1|0x1000
t[1]: 4| 0x1004
t[2]: 2|0x1008
t[3]: 7|0x100C
t[4]: 3|0x1010

m In this example *(p+1i) is the same as t[i], because
p points to the beginning of array t

(© based on slides by Zséka, Fiala, Vitéz

enum. Pointers. Strings

15 October, 2025

14 / 31

The enumerated type Motivation Syntax Examples

Pointers and arrays I-|T

m Pointers can be taken as arrays, this means they can be
indexed.
By definition p[i] is identical to * (p+i)

t[0]: 1]0x1000
1 int t[5] = {1,4,2,7,3}; t[1]: 4| 0x1004
2 int *p, 1i; t[2]: 2| 0x1008
3 s [T t[3]: 7| 0x100C
4 p = 5 .
M G 0 5 < B e t[4]: 3|0x1010
6 printf("%d ", plil);

14273

m In this example p[i] is the same as t[i], because p points to
the beginning of array t

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 15 / 31

The enumerated type

Pointers and arrays

m Arrays can be taken as pointers.

Motivation Syntax

Examples

T

The identifier (name) of array is the starting address of the

array, in other words the value of expression t is &t [0]

t[5] =
Py g

int {1,4,2,7,3};

int

p = t; /*x &t[0] */
for (i = 0; i < 5; ++1i)
printf ("%d ", pl[il);

14273

o o br W N R

m Pointer-arithmetics work for arrays too:

t+1i is identical to &t [i]

(© based on slides by Zséka, Fiala, Vitéz

enum. Pointers. Strings

t[0] :

t[1]:

t[2] :

i 2] 0

t[4]:

Wi~ el

0x1000
0x1004
0x1008
0x100C
0x1010

15 October, 2025

16 / 31

The enumerated type ation Syntax Examples

Pointers and arrays — summary |'|T

m Pointer can be taken as array, and array as a pointer.
m index operator is only a notation
the compiler will always replace a[i] with *(a+i),
both if a is pointer, and also if a is array.
m Differences:
m Elements of array have allocated space in memory (variables).
No allocated elements belong to the pointer.
m Starting address of array is constant, it cannot be changed.
Pointer is a variable, the address stored in it can be modified.

/* p can be changed array CANNOT */
p = ptl; /* ok x/ array = array + 1; /* ERROR */

1 int array[b] = {1, 3, 2, 4, 7};

2 int *p = array;

3

4 /* the elements can be accessed via p and a */
5 plo]l = 2; array [0] = 2;

6 *p = 2; *array = 2;

7

8

9

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 17 / 31

The enumerated type Motivation Syntax Examples

Passing arrays to functions

m Let's use a function to determine the first negative element of
array!
m Passing an array:
m Address of first element doublex
m Size of the array typedef unsigned int size_t3

double first_negative(double *array, size_t size)
{
size_t 1i;
for (i = 0; i < size; ++i) /x for each elems. */

if (array[i] < 0.0)
return arrayl[i];

return 0; /* all are non-negative x/

} link

© 0 N o O A W N -

1 double myarray[3] = {3.0, 1.0, -2.0};
2 double neg = first_negative (myarray, 3); link

3defined in stdio.h

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 18 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/firstnegative.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/firstnegative.c

The enumerated type Motivation Syntax Examples

Passing arrays to functions |'|

m To distinguish arrays and pointers in the parameter list, we can
use the array-notation when passing an array.

1 double first_negative (double arrayl[], size_t size)

2 /* (double #*array, size_t size) */
3

4

5 }

m In the formal parameter list double a[] is
identical to double *a.

m In the formal parameter list we can use only empty []1, and
size should be passed as a separate parameter!

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 19 / 31

The enumerated type Motivation Syntax Examples

Passing arrays to functions |'|T

© 0 N O U A W N K

m Let's use a function to determine the first negative element of
array!

m The return value should be the address of the element found.

double *first_negative(double *array, size_t size)
{
size_t 1i;
for (i = 0; i < size; ++i) /* for each elems. */
if (array[i] < 0.0)
return &arrayl[i];

return NULL; /* all are non-negative */

}

=
x~

based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 20 /31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/firstnegative_ptr.c

The enumerated type

Null pointer

m The null pointer (NULL)

m It stores the 0x0000 address
m Agreed that it "points to nowhere”

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 21 /31

Pointers Def. Func.param. Arithmetics Arrays

Chapter 2

Strings

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 22 /31

Pointers Def.

Strings

m In C, text is stored in character arrays with termination sign,
called as strings.
m The termination sign is the character with 0 ASCll-code *\0’,

the null-character.
"S"’o"’m"’e"’"’t"’e"’x"’t"’\o"

based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 23 /31

Pointers Def.

Defining strings as character arrays

m Definition of character array with initialization
1 char s[] = {’H’, ’e’, ’1°, 71, %07, °\0’};

m The same in a more simple way

1 char s[] = "Hello"; /* s array (const.addr 0x1000) */
’H’ | 0x1000 ’D’ | 0x1000
’e’ | 0x1001 e’ | 0x1001
’1° | 0x1002 >1°| 0x1002
’1’ | 0x1003 °1°| 0x1003
’0’ | 0x1004 ’a’| 0x1004
’\0’ | 0x1005 ’\0’ | 0x1005

m Elements of s can be accessed with indexing or with
pointer-arithmetics

1 *s = ’D’; /* s is taken as pointer */
2 s[4] = ’a’; /* s is taken as array */

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 24 /31

Pointers Def.

Defining strings as character arrays

m We can allocate memory for a longer string than needed now,
thus we have an overhead.

1 char s[10] =

)H’
)e)
71,
717
’07
’\07
?

?
?
?

"Hello"; /* s array,
0x1000 SHE
0x1001 ‘e’
0x1002 pleX
0x1003 A
0x1004 ’0’
0x1005 alaX
0x1006 N
0x1007 ’\0’
0x1008 ?
0x1009 ?

m Modification:

1 s[B] = s[6] =
2 s[7] = °\0’;

© based on slides by Zséka, Fiala,

Vitéz

0x1000
0x1001
0x1002
0x1003
0x1004
0x1005
0x1006
0x1007
0x1008
0x1009

(const.addr. 0x1000)

/* must be terminated */

enum. Pointers. Strings

15 October, 2025

*/

25 / 31

Pointers Def. Func.param. Arithmetics Arrays

Defining strings as character arrays |'|T

m Defining a constant character array and a pointer pointing to
it, with initialization.

1 char *s = "Hello"; /* s pointer x/

’H’ | 0x1000
s:OxlOOOP/P ’e’ | 0x1001
’1’ | 0x1002
’1’ | 0x1003

>0’ | 0x1004
’\0’ | 0x1005

m Here the so-called static part of memory is used to store the
string. The content of the string cannot be changed.

m We can modify value of s, however it is not recommended,
because this stores the address of our string.

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 26 / 31

Pointers Def.

Remarks

m Character or text?

1 char s[] = "A"; /* two bytes: {’A’, ’\0’} x/
> char ¢ = A’ /* one byte: A’ %/

m A text can be empty, but there is no empty character

1 char s[] = ""; /% one byte: {’\0°} %/
2 char ¢ = ?7; /* ERROR, this is not possible */

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 27 /31

Pointers Def. Func.param. Arithmetics Arrays

Reading and displaying strings

m Strings are read and displayed with format code %s

char s[100] = "Hello";

printf ("%s\n", s);

printf("Enter a word not longer than 99 characters: YR
scanf ("%s", s);

printf ("%s\n", s);

a oA W N R

Hello
Enter a word not longer than 99 characters: ghostbusters

ghostbusters

m Why don't we have to pass the size for printf?
= Why don't we need the & in the scanf function?

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 28 /31

Pointers Def. Func.param. Arithmetics Arrays

Reading and displaying strings I-|T

m scanf reads only until the first whitespace character. To read
text consisting of several words, use the gets function:

char s[100];

1
> printf("Enter a text - max. 99 characters long: ");
3 gets(s);

4 printf("%s\n", s);

Enter a text - max. 99 characters long: this is text

this is text

based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 29 /31

Pointers Def. Func.param

Strings — typical mistakes

m Typical mistake: comparison of strings

Arithmetics Arrays

T

1 char *s = "Hello";

2 char *r = "Hello";

3 if (s == r) /* what do we compare? */

4
’H’ | 0x1000 ’H?

s:OxlOOOP/P ’e’ | 0x1001 r:OxlSESF/P ‘e’

’17 | 0x1002 1
’17 | 0x1003 1
>0’ | 0x1004 ‘o0’
’\0’ | 0x1005 ’\0?

m The same mistake happens if defined as arrays

(© based on slides by Zséka, Fiala, Vitéz

enum. Pointers. Strings

0x13E8
0x13E9
0x13EA
0x13EB
0x13EC
0x13ED

15 October, 2025

30 / 31

Pointers Def. Func.param. Arithmetics Arrays

String functions

m Comparing strings
m the result
m positive, if s1 stands after s2 alphabetically
m 0O, if they are identical
m negative, if s1 stands before s2 alphabetically

1 int strcmp(char #*sl1, char *s2) /* pointer-notation */
2 o

3 while (*xs1 != ’\0’ && *sl1 == *s2)

4 {

5 sl++;

6 s2++;

7 }

8 return *sl - *s2;

o }

m Is it a problem, that s1 and s2 was changed during the check?
m Remark: In the solution we made use of the information that
\0 is the 0 ASCll-code character!

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 31 /31

Pointers Def. Func.param. Arithmetics Arrays

Strings — typical mistakes I'IT

m Typical mistake: string copy attempt

1 char *s = "Hello";
2 char *r = "Apple";
3 r = s; /* what do we copy */
’H’ | 0x1000 ’H’ | 0x1000
s:OXlOOOlf ’e’ | 0x1001 |s:0x1000 ’e’ | 0x1001
’1’ | 0x1002 ’1’ | 0x1002
’1’ [0x1003 ’1’ | 0x1003
’0’ [0x1004 70’ | 0x1004
’\0’ [0x1005 ’\0’ [0x1005
r:0X13E8|\ r:0x1000
’A’ | 0x13E8 ’A’ | 0x13E8
’p’ | 0x13E9 ’p’ | 0x13E9
’p’ | Ox13EA ’p’ | 0x13EA
’1’ | 0x13EB ’1’ | 0x13EB
’e’ | 0x13EC ’e’ | 0x13EC
’\0’ | 0x13ED ’\0’ | 0x13ED

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 32 /31

Pointers Def.

Other string functions

m #include <string.h>

strlen
strcmp
strcpy
strcat
strchr
strstr

length of string (without \0)
comparing strings

copying string

concatenating strings

search for character in string
search for string in string

m strcpy and strcat functions copy 'without thinking’, the user
must provide the allocated memory for the resulting string!

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 33 /31

Chapter 3

The enumerated type

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 34 /31

The enumerated type — Motivation

m We are writing a game, in which the user can control direction

of the player with 4 keys.

(A&
m As the input from user needs to be read (checked) frequently,

we create a read_direction() function for this task.

m This function reads from the keyboard and returns the
direction to the calling program segment.

m What type should the function return with?

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 35 /31

The enumerated type — Motivation

m Idea Nr. 1: Let's return with the key pressed.
(’a’,’s’,’w’,’d’):

1 char read_direction(void)

2 o

3 char ch;

4 scanf ("%c", &ch);

5 return ch;

6 1} link
m Problems:

m We have to decode characters into directions many times at
different parts of the source code.
m If we change to use the arrow keys < | T — for control, we
have to modify the source code a thousand time and place.
m Solution:

m We have to decode in place (inside the function), and should
return with direction.
m But how can we do that?

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 36 /31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/direction_bad.c

The enumerated type — Motivation

m ldea Nr. 2: Let's return with int values 0,1,2,3:

))
a 0 AN int read_direction(void) {

w1 1 char ch;

4 2 — s scanf ("%c", &ch);

'g? 3 |4 switch (ch) {
5 case ’a’: returm 0; /* left x/
6 case ’w’: return 1; /* up */
7 case ’d’: return 2; /* right x/
8 case ’s’: return 3; /* down */
9 iy
10 return 0; /*x default is left :) */
1}

m Problem:

m In other parts of the program we have to use numbers 0-3 for
the directions, so the programmer must remember the
number-direction assignments.

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 37 /31

The enumerated type — Motivation

m We need a type named direction, that can store
LEFT, RIGHT, UP, DOWN values.

m We can do such thing in C!
Declaration of the appropriate enumerated type (enum):

1 enum direction {LEFT, RIGHT, UP, DOWN};

m How to use the type:

1 enum direction d;
> d = LEFT;

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025

38 / 31

The enumerated type — Motivation

m The final solution with the new type

enum direction {LEFT, RIGHT, UP, DOWNZ};
typedef enum direction direction; /* simplification */

direction read_direction(void)
{
char ch;
scanf ("%c", &ch);
switch (ch)
{
case ’a’: return LEFT;
case ’w’: return UP;
case ’d’: return RIGHT;
case ’s’: return DOWN;
}
return LEFT;

© 0 N o U A W N K

e i v = =
o A W N B O

-
o
(o)
=
~

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 39 /31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/direction.c

The enumerated type — Motivation

m Usage of the function:

1 direction d = read_direction();

> if (d == RIGHT)

3 printf ("You were eaten by a tiger\n"); link

m Without the enumerated type, it would look like this:

1 int d = read_direction();

2 if (d == 2) /* "magic" constant, what does it mean? x/
3 printf ("You were eaten by a tiger\n"); link

m The enumerated type. ..
m replaces "magic constants” with informative code,
m focuses on content instead of representation,
m allows a higher level programming.

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 40 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/direction.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/direction_bad.c

The enumerated type — Definition

The enumerated (enum) type

Joins into one type integer type constants referenced by symbolic
names.

enum [<enumeration label>]:
{ <enumeration list> }

[<variable identifiers>].:;

1 enum direction {LEFT, RIGHT, UP, DOWN} dirl, dir2;

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 41 / 31

enum examples

16

enum month
JAN, /=*
FEB, /*
MAR, /%
APR, /%
MAY, /%
JUNE, /*
JULY, /x*
AUG, /*
SEPT, /*
OCT, /x
NOV, /%
DEC /*

I8

enum month

~

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

= O © 00 N O Ul WN = O

= e

m=0CT;

=
o

enum {
RED, /* 0 */
BLUE = 3, /* 3 */
GREEN , /* 4 */
YELLOW, /* 5 %/
GRAY = 10 /* 10 x/

@3

¢ = GREEN;

printf ("c: %d\n", c);

(© based on slides by Zséka, Fiala, Vitéz

enum. Pointers. Strings

15 October, 2025

42 / 31

Thank you for your attention.

(© based on slides by Zséka, Fiala, Vitéz enum. Pointers. Strings 15 October, 2025 43 / 31

	The enumerated type
	Motivation
	Syntax
	Examples

	Pointers
	Definition of pointers
	Passing parameters as address
	Pointer-arithmetics
	Pointers and arrays

